

Home Search Collections Journals About Contact us My IOPscience

The pseudogap and anisotropic thermal expansion in RMn_4AI_8 (R = La,Y,Lu and Sc)

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2006 J. Phys.: Condens. Matter 18 3931 (http://iopscience.iop.org/0953-8984/18/16/003)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 28/05/2010 at 10:08

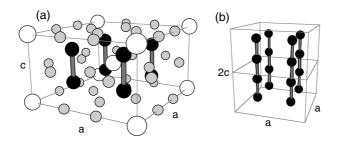
Please note that terms and conditions apply.

J. Phys.: Condens. Matter 18 (2006) 3931-3936

The pseudogap and anisotropic thermal expansion in RMn_4Al_8 (R = La, Y, Lu and Sc)

Y Muro, H Nakamura and T Kohara

Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297, Japan


Received 18 January 2006 Published 3 April 2006 Online at stacks.iop.org/JPhysCM/18/3931

Abstract

The temperature dependence of the magnetic susceptibility shows a broad maximum at ~550 and 630 K for LuMn₄Al₈ and ScMn₄Al₈, respectively, which can be interpreted as due to the presence of a pseudogap in the effective bands as in LaMn₄Al₈ and YMn₄Al₈. The anisotropic thermal expansion observed for RMn₄Al₈ (R = La, Y, Lu and Sc) and the sensitive volume dependence of the gap width throughout the RMn₄Al₈ system suggest dominant magnetic coupling in Mn spin chains along the *c* axis.

1. Introduction

The effect of geometry on the magnetism and the spin gap formation in magnets have been extensively investigated in recent decades. We have recently reported that $(La_{1-x}Y_x)Mn_4Al_8$ $(0 \le x \le 1)$ is a very unique itinerant electron system, which shows a strongly concentrationsensitive broad maximum in the temperature dependence of the susceptibility [1]. To explain this behaviour, a pseudogap model, which assumes a partially filled gap in the spin excitation spectrum (see the inset of figure 2), was applied by referring to a well-known square band model proposed for FeSi [2]. In this case, the temperature of the maximum, T_{max} , roughly corresponds to the pseudogap width, Δ . This pseudogap model was originally applied to YMn_4Al_8 to explain the activation type temperature dependence of the nuclear spin-lattice relaxation rate observed in a high temperature range [3], which is a rare example for itinerant electron magnets. The strong concentration dependence of T_{max} , i.e. Δ , was interpreted as due to a (chemical) pressure or volume effect on the electronic structure. We also emphasized the characteristics of the Mn spin arrangement, which has a quasi-one-dimensional (1D) nature, and proposed that the origin of the gap formation is associated with the characteristic geometry. In the present study, to confirm whether the sensitive Δ is only due to a pressure or volume effect, we extend measurements to LuMn₄Al₈ and ScMn₄Al₈ with lattice volumes smaller than those of $(La_{1-x}Y_x)Mn_4Al_8$; the lattice parameters at room temperature are listed in table 1 [4-6]. If the 1D magnetic interaction is responsible for the gap formation, we expect anisotropic properties. Hence we measured temperature dependences of the lattice parameters

Figure 1. (a) The CeMn₄Al₈ type structure. White, black and grey marks represent Ce, Mn and Al atoms, respectively. (b) The Mn sublattice doubled along the c axis.

Table 1. Lattice parameters and pseudogap widths of RMn_4Al_8 (R = La, Y, Lu and Sc).

	a (Å)	<i>c</i> (Å)	$d_{\mathrm{Mn-Mn}}(\mathrm{\AA})$	Δ (K)
LaMn ₄ Al ₈	9.031 ^a	5.166 ^a	2.583	250 ^d
YMn ₄ Al ₈	8.856 ^a	5.103 ^a	2.552	500 ^d
$LuMn_4Al_8$	8.814 ^b	5.083 ^b	2.542	610
$ScMn_4Al_8$	8.7734 ^c	5.0467 ^c	2.5234	700

^a From [4], ^b from [5], ^c from [6], ^d from [1].

for RMn_4Al_8 with R = La, Y, Lu and Sc using low temperature x-ray diffraction, which can give information on the anisotropy in polycrystalline samples.

The characteristics of RMn₄Al₈ are summarized as follows.

- (1) The crystal structure is of tetragonal CeMn₄Al₈ type (space group *I*4/*mmm*; see figure 1(a)) derived from the ThMn₁₂ type, in which Mn atoms at the 8f site form linear chains along the *c* axis (see figure 1(b)); the intrachain Mn–Mn distance *d*_{Mn–Mn} (=2.5–2.6 Å) is much larger than the interchain distances 4.4–4.5 Å [4].
- (2) LaMn₄Al₈ and YMn₄Al₈ show a relatively large electronic specific heat coefficient [7], indicating strong electron correlations; results for LuMn₄Al₈ and ScMn₄Al₈ were not found.
- (3) In $(La_{1-x}Y_x)Mn_4Al_8$, the spin pseudogap can be controlled continuously and nearly uniformly over a wide range of $\Delta = 250-500$ K by applying chemical pressure which induces anisotropic volume change [1].
- (4) RMn₄Al₈ (R = La, Y, Lu and Sc) compounds basically do not show magnetic long range ordering; specific heat measurements indicate no phase transition for LaMn₄Al₈ and YMn₄Al₈ [7]. Recent experiments, however, suggested the development of magnetic correlations below ~50 K [8, 9] and the appearance of static internal fields below ~4 K [10] in LaMn₄Al₈.

2. Experimental procedures

Polycrystalline samples of RMn_4Al_8 were prepared by arc melting under an Ar atmosphere and annealed at 800 °C for one week in evacuated quartz tubes. The purities of starting materials, R (La, Y, Lu and Sc), Mn and Al, were 99.9, 99.98 and 99.99%, respectively. The susceptibility was measured by using a SQUID magnetometer (Quantum Design, MPMS-5) between 5 and 800 K at 10 kOe. Temperature dependences of lattice parameters between 10 and 300 K were

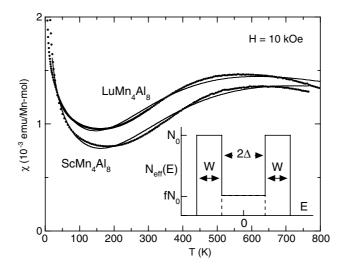


Figure 2. Temperature dependences of the susceptibility for LuMn₄Al₈ and ScMn₄Al₈. The inset shows the effective density of states assumed for the analysis. Solid curves represent the best fit with constraints $W = 2\Delta$ and f = 25%.

measured using conventional x-ray powder diffraction with Cu K α radiation. The Rietveld refinement was performed by using RIETAN2000 [11] to obtain lattice parameters.

3. Experimental results

3.1. Susceptibility

Figure 2 shows temperature dependences of the susceptibility measured for LuMn₄Al₈ and ScMn₄Al₈. Broad maxima were observed at $T_{max} \simeq 550$ and 630 K for LuMn₄Al₈ and ScMn₄Al₈, respectively, as in the cases of LaMn₄Al₈ and YMn₄Al₈ [3, 8, 12]. Upturns at low temperatures were seen, as in the cases of $(La_{1-x}Y_x)Mn_4Al_8$ [1]. Although these upturns may have arisen from an intrinsic origin partially [8, 9], in the cases of LuMn₄Al₈ and ScMn₄Al₈, it is likely that the upturns come from paramagnetic impurities and/or recovered spins near defects.

To analyse the results of the susceptibility, we apply the same pseudogap model as was used for $(La_{1-x}Y_x)Mn_4Al_8$ [1, 3, 8]. The model of the effective density of states (DOS), $N_{\text{eff}}(E)$, is shown as the inset in figure 2, where W, Δ and f represent the bandwidth, the gap width and the relative fraction of the filled part in the gap, respectively. We assume thermal excitations in simple square bands separated by a partially filled gap, where the Fermi level, E_{F} , is taken at the centre of the pseudogap. The experimental susceptibility was reproduced with two components as

$$\chi = -2\mu_{\rm B}^2 \int N_{\rm eff}(E) \frac{\partial f(E,T)}{\partial E} \,\mathrm{d}E + \frac{C}{T-\theta} \tag{1}$$

where $\mu_{\rm B}$ is Bohr magneton and f(E, T) is Fermi distribution function. The second term, with C and θ fitting parameters, describes the low temperature upturn. The maximal density of states N_0 in $N_{\rm eff}(E)$ was also treated as a fitting parameter. In analysing the results for $({\rm La}_{1-x}{\rm Y}_x){\rm Mn}_4{\rm Al}_8$ [1], we assumed $W = 2\Delta$ and f = 25% since we obtained a common relations $W \simeq 2\Delta$ and $f \simeq 25\%$ for all the compounds by treating all the parameters as

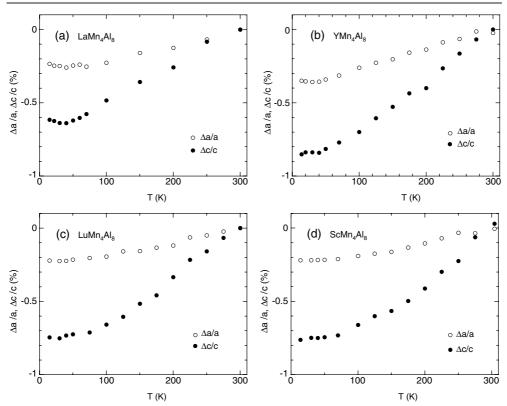


Figure 3. Relative temperature variations of lattice parameters for RMn_4Al_8 with R = La(a), Y (b), Lu (c) and Sc (d).

free variables. For LuMn₄Al₈ and ScMn₄Al₈, the relations $W \simeq 2\Delta$ and $f \simeq 25\%$ do not necessarily hold. The final refinement was, however, performed by imposing the constraints $W = 2\Delta$ and f = 25% to reduce the number of free parameters and to obtain approximate values of the characteristic energy for the RMn₄Al₈ compounds. Solid curves in figure 2 indicate best-fit results thus obtained. The values of Δ obtained are listed in table 1.

3.2. Thermal expansion

Figures 3(a), (b), (c) and (d) show thermal expansion curves measured for RMn₄Al₈ with R = La, Y, Lu and Sc, respectively. Relative temperature variations of lattice parameters, $\Delta a/a = [a(T) - a(300 \text{ K})]/a(300 \text{ K})$ and $\Delta c/c = [c(T) - c(300 \text{ K})]/c(300 \text{ K})$ are plotted against temperature. Anisotropic behaviours were commonly observed for all the compounds; the thermal expansion along the *c* axis is 2–4 times larger than that along the *a* axis. This fact is consistent with the interpretation that the magnetism in RMn₄Al₈ is dominated by the intrachain interaction. In the previous paper [8], we reported the averaged thermal expansion of polycrystalline LaMn₄Al₈ and YMn₄Al₈ measured by a strain gauge method. Averaged values of the present results agree quantitatively with the polycrystalline thermal expansion. For LaMn₄Al₈, both *a* and *c* increase with decreasing temperature below ~40 K. This negative thermal expansion corresponds to the development of certain magnetic correlations at low temperatures [8].

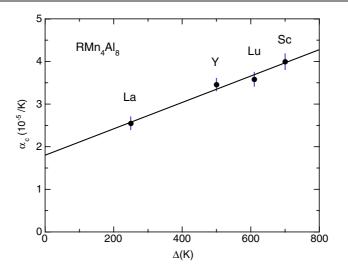


Figure 4. Thermal expansion coefficients along the c axis plotted against the pseudogap width Δ .

Focusing on temperature dependences of *c*, there is an apparent correlation between the temperature derivative and the characteristic energy. In figure 4, $\alpha_c = (1/c)(dc/dT)$, estimated roughly at around room temperature, is plotted as a function of Δ . The variation of α_c is mainly ascribed to a magnetic origin. One of the characteristics of itinerant electron magnets is soft or temperature-induced longitudinal spin fluctuations. The smaller α_c for LaMn₄Al₈ implies that the spin fluctuations are nearly saturated at room temperature, while the larger α_c means strong recovery of spins at around room temperature. The Δ dependence of α_c is thus a reasonable consequence for the soft spin gap system.

4. Discussion

It is surprising that the pseudogap width in RMn₄Al₈ can be controlled continuously over the wide range of $\Delta = 250-700$ K. In discussing the magnetovolume effect in RMn₄Al₈, the intrachain Mn–Mn distance d_{Mn-Mn} (=c/2) is appropriate as the scale rather than the lattice volume. Figure 5 shows Δ plotted against d_{Mn-Mn} at room temperature. In the first approximation, it is reasonable to ascribe the variation of Δ entirely to the volume effect. In general, for classical 3d bands, we expect a volume effect $W = d^{-5}$, where d is the interatomic distance between 3d atoms [13]. A tentative fit of the data in figure 5 to $\Delta \propto d_{Mn-Mn}^{-\Gamma}$ gives $\Gamma = -\ln \Delta / \ln d_{Mn-Mn} = 48 \pm 3$. Noting the approximate relation $\Delta \propto W$ for RMn₄Al₈, the magnitude larger by one order than the classical expectation suggests that the electronic structure around E_F is not dominated by classical interactions, and that the gap is not an accidental consequence of the one-electron bare bands. This strong d_{Mn-Mn} dependence of Δ supports the idea that the 1D instability leads to the formation of the spin singlet-like state at low temperature. It is interesting to note that other 3d correlated electron systems, FeSi and FeSb₂, which show gap type temperature dependences of the susceptibility, have similar large values of Γ [14] and the anisotropic thermal expansion [15], respectively.

In conclusion, we observed anisotropic thermal expansion for RMn_4Al_8 . This result supports the idea that the magnetic interaction in RMn_4Al_8 is strongly anisotropic. In the RMn_4Al_8 system, the pseudogap can be controlled continuously over a very wide range

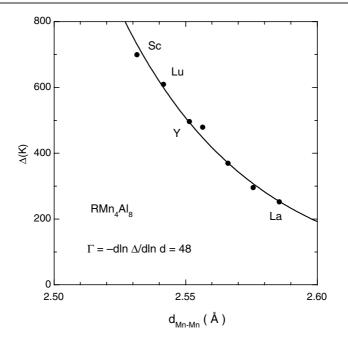


Figure 5. The width of the pseudogap estimated for RMn_4Al_8 ($R = (La_{1-x}Y_x)$, Lu and Sc) plotted against the intrachain Mn–Mn distance. Results for $(La_{1-x}Y_x)Mn_4Al_8$ were cited from [1].

of $\Delta = 250-700$ K. The origin of the pseudogap may be associated with the quasi-1D arrangement of Mn spins.

Acknowledgments

We acknowledge assistance in the x-ray diffraction experiment from Mr A Shibahara and collaboration in the thermal expansion measurements with Dr G Motoyama. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

- Nakamura H, Muro Y, Giri S, Umemura J, Kobayashi H, Koyama T and Kohara T 2005 J. Phys. Soc. Japan 74 2421
- [2] Jaccarino V, Wertheim G K, Wernick J H, Walker L R and Arajs S 1967 Phys. Rev. 160 476
- [3] Nakamura H, Giri S and Kohara T 2004 J. Phys. Soc. Japan 73 2971
- [4] Buschow K H J, van Vucht J H N and van den Hoogenhof W W 1976 J. Less-Common Met. 50 145
- [5] Felner I and Nowik I 1979 J. Phys. Chem. Solids 40 1035
- [6] Ya K B, Myakush O R and Palasyuk A M 2004 J. Alloys Compounds 367 211
- [7] Hagmusa I H, Klaasse J C P, Brück E, de Boer F D and Buschow K H J 2000 J. Alloys Compounds 297 21
- [8] Muro Y, Giri S, Motoyama G, Nakamura H and Kohara T 2005 J. Phys. Soc. Japan 74 1135
- [9] Muro Y, Motoyama G, Nakamura H and Kohara T 2006 *Physica* B at press
- [10] Rainford B D, Leavey C J, Hillier A D and Stewart J R 2005 *Physica* B **359–361** 929
- [11] Izumi F and Ikeda T 2000 Mater. Sci. Forum **321–324** 198
- [12] Coldea M, Neumann M, Lütkehoff St, Mähl S and Coldea R 1998 J. Alloys Compounds 278 72
- [13] Heine V 1967 Phys. Rev. 153 673
- [14] Koyama K, Goto T, Kanomata T and Note R 1999 J. Phys. Soc. Japan 68 1693
- [15] Petrovic C, Lee Y, Vogt T, Lazarov N Dj, Bud'ko S L and Canfield P C 2005 Phys. Rev. B 72 045103